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Abstract
Background Wearable-generated data yield objective information on physical activity and sleep variables, which, are 
in turn, related to the phenomenology of depression. There is a dearth of wearable-generated data regarding physical 
activity and sleep variables among youth with clinical depression.

Methods Longitudinal (up to 24 months) quarterly collections of wearable-generated variables among adolescents 
diagnosed with current/past major depression. Latent class analysis was employed to classify participants on the 
basis of wearable-generated: Activity, Sleep Duration, and Sleep efficiency. The Patient Health Questionnaire adapted 
for adolescents (PHQ-9-A), and the Ruminative Response Scale (RRS) at study intake were employed to predict class 
membership.

Results Seventy-two adolescents (72.5% girls) were recruited over 31 months. Activity, Sleep Duration, and Sleep 
efficiency were reciprocally correlated, and wearable-generated data were reducible into a finite number (3 to 4) 
of classes of individuals. A PHQ-A score in the clinical range (14 and above) at study intake predicted a class of low 
physical activity (Acceleration) and a class of shorter Sleep Duration.

Limitations Limited power related to the sample size and the interim nature of this study.

Conclusions This study of wearable-generated variables among adolescents diagnosed with clinical depression 
shows that a large amount of longitudinal data is amenable to reduction into a finite number of classes of individuals. 
Interfacing wearable-generated data with clinical measures can yield insights on the relationships between objective 
psychobiological measures and symptoms of adolescent depression, and may improve clinical management of 
depression.
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Introduction
Major depressive disorder (MDD) affects a significant 
proportion of citizens worldwide; studies carried out 
amongst children and adolescents convey estimates of 
both apparent recent increase [1], and relatively low 
prevalence of MDD [2], which in turn led some to recon-
sider the construct validity of the diagnosis of depression 
[3] and the allocation of risk factors (e.g., individual vs. 
societal [4], or socio-demographic vs. biological [5]) for 
the younger stratum of the population. In as much as 
younger individuals face novel environments and new 
hazardous factors compared to the previous generations, 
a deeper understanding of their living contexts and psy-
chobiological landscapes becomes necessary. This can 
help to better frame the value and the meaning of the 
MDD diagnosis, for both classificatory and therapeutic 
reasons.

In addition to the current methods of diagnosing MDD 
through clinical assessments of mood, activity, sleep, and 
anhedonia, a host of new technologies can help map the 
construct more objectively, and with unprecedented den-
sity of information. Specifically, with the proliferation of 
smartphones, smartwatches and wearables, one can cap-
ture objective sensor data on sleep and activity, as well 
as time-locked information on emotions and cognitions 
among adult [6] as well as younger [7, 8] individuals. 
This large amount of raw data can then be converted into 
meaningful low-level behavioural markers (e.g. location 
type, activity type, sleep duration, phone usage), high-
level behavioural markers (e.g. hedonic activity, fatigue, 
distractibility), and eventually affective states and clinical 
conditions (e.g. depression, anxiety), which in turn can be 
used to investigate aetiology, prognosis or treatment [9].

Specifically, physical activity and sleep can be mapped 
by portable actigraphs that are sensitive to accelera-
tion/deceleration (hence the term ‘accelerometry’) in a 
three-dimensional space. For this reason, accelerometry 
is increasingly adopted to objectively quantify physi-
cal activity, sleep, and circadian rhythms in people with 
mood disorders.

More than 50 accelerometry-based controlled studies 
of MDD have now become available [10–15]: they con-
sistently show lower and more variable daytime physical 
activity, poorer sleep efficiency, and dampened circadian 
rhythms associated with MDD. Moreover, analyses that 
covered two or more weeks of accelerometry data and 
compared acute vs. remitted MDD episodes, indicate 
the presence of trait- vs. state issues. Specifically, since 
alterations in physical activity and circadian rhythmicity 
appear to persist after remission and show familial aggre-
gation, they may constitute trait markers of MDD; on the 
contrary, sleep difficulties undergo resolution after acute 
episodes, and may more likely reflect a state marker of 
MDD [12].

The host of new and dense data points that can be 
acquired by accelerometry bears at least three impor-
tant implications. First, the adoption of technologies can 
improve the precision and reliability of data collection, 
and help address some challenges associated with MDD 
assessment, such as the subjective nature of diagnostic 
processes and the variability of information across infor-
mants (e.g., relatives, caregivers or parents vs. clients). 
The high correlation between mental health and changes 
in behaviour as detectable by digital devices supports 
the viability of these technology-assisted approaches [7]. 
Second, future, iterative processes of revision of diagnos-
tic criteria may use the information obtained by sensor 
data and provide support to the analyses of which phe-
nomena should be included -or left out- as core diagnos-
tic elements, or peripheral associated features of mental 
disorders. Third -and possibly most importantly- several 
variables that are captured by sensors -such as physical 
activity- are modifiable factors that have potential, sig-
nificant, bi-directional influences on MMD [16–18], so a 
dual role of clinical readouts and therapeutic tools can be 
envisaged [8, 17, 19, 20].

Turning to the specific context of adolescence, adoles-
cent MDD (AMDD) presents with a tendency towards 
long, debilitating episodes, which makes the appraisal of 
time variability and prediction of relapse in the younger 
age range particularly relevant [1]. Because of the exten-
sive dissemination of digital devices amongst youth and 
adolescents, and their familiarity with contemporary 
technologies, measuring and improving their mental 
health by digital phenotyping appears a viable approach, 
and a tool that can be integrated within the context of 
more traditional clinical approaches [7]. While a grow-
ing body of literature investigating affective states and/
or physical activity through wearables in children and 
adolescents is becoming available, objective sensor-based 
data available for depression in childhood and adoles-
cence remain scarce and based on non-clinical samples, 
with depression ascertained as a continuous variable, 
rather than a clinical category. A longitudinal study 
based on the large Avon Longitudinal Study of Parents 
and Children (ALSPAC)- general population cohort [21] 
showed the presence of 3 discrete trajectories of physi-
cal activity, and the association between sedentary activ-
ity and greater risk for depressive symptoms at 18 years 
of age. However, there is still a dearth of knowledge on 
wearable-derived data in clinical samples of children/
adolescents diagnosed with AMDD, so that the temporal 
patterns and relationship between sensor-derived activity 
and sleep data, and clinically-relevant depressive states 
in this age range remains largely uncharted. Specifically, 
it is not clear to what extent findings from community 
samples align with those from clinical samples: address-
ing this point is important to build connections between 
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actigraphic variables and pathophysiological processes, 
rather than individual differences across the spectrum of 
mood variation.

The present study is part of the larger Depression Early 
Warning (DEW) research project, aimed at the longitu-
dinal mapping and modelling of the course of AMDD, 
including relapse prediction. The DEW project employs 
a combination of phenotypic measures, including passive 
measures such as wearable actigraphs (WA), active eco-
logical momentary assessments (EMA), and in-person 
periodic clinical assessments.

Given its interim nature, this first analysis is not aimed 
at predicting MDD relapse by accelerometry: rather, 
given the paucity of this type of studies in youth, it 
explores the association between widely-adopted accel-
erometric indices, and measures of depression among 
youth who participate in a longitudinal study of MDD. 
Inasmuch as a recent study of adults [12] found both cur-
rent and remitted MDD associated with variation in sleep 
and physical activity as indexed by the same technol-
ogy employed in the DEW study, our aim was to assess 
whether same/similar findings could be substantiated in 
our longitudinal sample.

Therefore, here we: (a) gauged the interdependence 
among the WA variables of: Activity, Sleep Duration, and 
Sleep efficiency; (b) estimated by Latent Class Analysis 
(LCA) the number of classes that best capture the tem-
poral unfolding of the WA variables in the longitudinal 
DEW sample, and: (c) assessed the ability of 2 widely-
used clinically validated questionnaires for AMDD and 
its associated features - the Patient Health Questionnaire 
modified for adolescents (PHQ–A [22, 23]),, and the 
Ruminative Response Scale (RRS [24]), measured at base-
line (i.e., at the DEW study intake), to predict WA class 
membership. Measurement over time can take a variable-
centred approach (under the assumption of homogene-
ity), or a person-centred approach (under the assumption 
of heterogeneity of change). Here, by taking advantage 
of time-sensitive, dense sensor-derived data, we adopt a 
view of AMDD as a highly heterogeneous clinical pheno-
type that is best mapped with a person-centred approach.

We hypothesised that the WA variables of Activity, 
Sleep Duration, and Sleep efficiency would show sen-
sible correlations, that individual patient-level data could 
be constrained into a finite number of meaningful latent 
classes, and that there would be associations between 
higher depressive and ruminative scores at baseline, and 
individual memberships into the different WA classes.

Methods
Setting
The DEW study is housed at the Centre for Addiction 
and Mental Health (CAMH) -an academic mental health 

provider- within the Child, Youth and Family Mood and 
Anxiety Team,

DEW study recruitment and participants
Youth aged 12–21 with current or currently remitted 
clinically diagnosed DSM-5 MDD [25] were recruited 
for the DEW longitudinal digital phenotyping study. Par-
ticipants are referred to the DEW study if among their 
presenting problems is a clinical diagnosis of ‘depres-
sion’ (both current and/or past). To be included in the 
study, participants had to meet the criteria for a current/
past diagnosis of DSM-5 MDD, as assessed by a trained 
Research Coordinator with the DIAS-C structured psy-
chiatric interview [26] (see below). Youth are excluded 
from participation into the DEW study if they have cur-
rent or past substance use disorder whose severity is 
rated more than moderate by DSM-5 criteria, active 
psychotic symptoms, bipolar disorder, epilepsy, autism 
spectrum disorder, multiple sclerosis, paraplegia or spi-
nal cord injury, juvenile rheumatoid arthritis or other 
major autoimmune disease, chronic renal failure, inher-
ited metabolic disorders, or active cancer. Following cli-
nicians’ referral, youth were recruited from: (a) the Mood 
and Anxiety clinic within CAMH’s Child, Youth and 
Emerging Adult Division, (b) online classified advertising 
including our hospital’s research recruitment page, and 
(c) referrals by professional health care providers in the 
greater Toronto area.

Participants were assessed for capacity to consent. 
Capacity of each potential participant to provide consent 
was assessed by a study team member trained by the PIs. 
Following the consent discussion, questions were asked 
to the participants to ensure they understood all study 
procedures, risks and benefits, as well as their rights as 
a volunteer in this research study. If the potential par-
ticipant did not demonstrate such capacity during the 
informed consent process, the assumption of capacity to 
consent was not validated and the informed consent dis-
cussion did not continue. In this case, the potential par-
ticipant was not considered eligible for the study.

In addition, non-CAMH recruited participants were 
asked for consent for DEW research personnel to con-
tact their health professional to confirm their diagno-
sis of MDD, or having experienced an episode of MDD. 
CAMH participants’ diagnoses were confirmed through 
inspection of their medical charts.

Data collection
Participants into the DEW study are administered clini-
cal diagnostics at baseline, including: the DIAS-C (a 
semi-structured interview originally designed for famil-
ial-genetic studies that covers an extensive array of diag-
noses) interview [26] to confirm their clinical MDD 
diagnosis. At baseline and at every following quarterly 
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follow-up (named ‘arm’ in the present paper, taking place 
every 3 months), measures are collected via the following 
rating scales/questionnaires: the Patient Health Ques-
tionnaire adapted for adolescents (PHQ-9-A [22]),, and 
the Ruminative Response Scale (RRS [27, 28]). The PHQ-
9-A consist of 9 items that correspond to the 9 DSM-
IV criteria for MDD; it has comparable sensitivity and 
specificity to longer depression measures [22], and it was 
derived from the PHQ-9 [23], which is a popular clinical 
instrument to assess depressive symptoms both in psy-
chiatric and in primary practice. The RRS was originally 
derived from the Response Style Questionnaire (RSQ 
[27]),, which included a self-report measure of rumina-
tion. A shorter, 8 item version of the RRS [24] showed 
good ability to measure within-person variation in rumi-
nation, so that a shorter version of the RRS was adopted 
in the DEW study too.

Following the administration of the aforementioned 
psychometric measures, 4 weeks of passive WA mea-
surements are collected according to the DEW protocol. 
After the 4-week WA data collection, participants return 
the wearable device and complete the PHQ-9-A online 
using a REDCap survey [29]. The whole cycle of 4 weeks 
of passive data collection and PHQ administration is then 
repeated at every DEW quarterly follow-up.

The present report is based on the first 72 participants 
in the DEW study, recruited over the first 31 months of 
the study, and on the PHQ-9-A and the RRS scores filled 
at the recruitment of the DEW study (i.e., at baseline). 
Given the 2-year longitudinal nature of the DEW study, 
the maximum number of quarterly follow-ups is 8 (with 
baseline considered as point 1).

Devices and technology
For each of the quarterly WA collections of the DEW 
study, the GENEActiv triaxial accelorometer original 
(Activinsights, Cambridge, United Kingdom) device is 
worn on the non-dominant wrist for 4 weeks (30 days) 
https:/ /activi nsights .com /technology/geneactiv/. The 
GENEActiv device has been validated against reference 
methods and proved reliable and valid by several studies 

[30–33]. Data were collected in person at CAMH, and 
Research staff were available to assist participants in clar-
ifying questionnaires while completing study measures.

Geneactiv devices were set up in person with the 
participant. Geneactiv devices are lightweight and 
waterproof so that participants are able to wear them 
continuously throughout the day. Participants were 
given an instruction page about the device and were also 
encouraged to contact study staff if they had any prob-
lems with the devices, or if they were not able to wear 
them for the expected time frame. If participants con-
tacted study staff, any issues or disruptions were noted.

Data related to sleep and activity were collected 
through self-report measures answered via mobile 
phones (EMA data) while participants were wearing the 
Geneactiv devices.

Data collected through the Geneactiv devices were 
verified by systematically checking: (a) the length of time 
participants wore the devices for (i.e., the consistency 
between the duration of data recording and the amount 
of time the device was worn); (b) near-body temperatures 
(these had to be ≥ 27 degrees Celsius as recorded by the 
Geneactive device, to ensure that the data received were 
a result of the participant’s actually wearing the device). 
In order to support the validity of Geneactiv data, non-
conformities of sleep duration collected by the Geneac-
tiv were also checked against self-reported EMA data, 
whereby participants were asked how many hours/day 
they had slept in any given day. Inconsistent matching 
between these sources led to data removal.

Whenever a discrepancy attributable to technical (e.g., 
battery insufficiently charged/dysfunctional) reasons was 
found, we adopted the Geneactiv Active Insights trouble 
shooting guide  h t t  p s : /  / a c  t i  v i n s i g h t s . c o m / t e c h n o l o g y / g e n 
e a c t i v /     to solve the issue.

The GGIR Package was used for processing WA data 
from GENEActiv devices and to extract actigraphy vari-
ables [33] listed in Table 1. Activity (in milligravity) was 
derived by the minute-level accelerometry count [12].

Further details about these parameters can be found in 
Appendix A.1.

Institutional Research Board (IRB) approval was 
granted by the CAMH Research Ethics Board.

Data analyses
Analyses were carried out with the R software version 
1.4.1717 [34].

Aim 1: assessing correlation among WA features
We first assessed the correlations between WA variables 
(Activity, Sleep Duration, Sleep efficiency) by building 
a correlation matrix among the 3 WA variables’ grand 
means for each participant, with the Hmisc package in 
R  [   h t  t p s  : / / c  r a  n . r - r o j e c t . o r g / w e b / p a c k a g e s / H m i s c / i n d e x . 

Table 1 Variables used in the analyses
Variable Source Definition
Activity (in milligravity) WA Average acceleration
Sleep Duration (in 
minutes)

WA Accumulated nocturnal sus-
tained inactivity bouts within 
sleep period time

Sleep Efficiency (%) WA Ratio of the total sleep duration 
and sleep period time (difference 
between onset and waking time)

PHQ-A Score REDCap Score at baseline
RRS Score REDCap Score at baseline
WA wearable actigraph,  REDCap secure web application for building and 
managing online surveys and databases

https://activinsights.com/technology/geneactiv/
https://activinsights.com/technology/geneactiv/
https://activinsights.com/technology/geneactiv/
https://cran.r-roject.org/web/packages/Hmisc/index.html
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h t m l     ] . While this oversimplifies the picture by averaging 
within-individual variability in time, it provides a first, at-
a-glance description of the correlations among-variables.

Aim 2: identifying trajectories using latent class analysis
In the light of the heterogeneity of the phenotype of 
MDD, to define classes of individuals with discrete psy-
chophysiological patterns, we adopted LCA. This type of 
mixture modelling is often favoured in person-centred 
approaches like ours, as it is particularly apt at identify-
ing latent subpopulations on the basis of their responses 
to observed variables. Specifically, LCA is suitable for 
identifying different classes within a heterogeneous pop-
ulation such as AMDD, and with complex data such as 
actigraphy data, in which patterns may not otherwise be 
easily identified.

We ran LCA models for each of the 3 WA variables 
using the LCMM Package in R (  h t t  p s : /  / c e  c i  l e p r o u s t - l i 
m a . g i t h u b . i o / l c m m /     [34] across all available quarterly 
assessments. Models were run for solutions between 
1 and 6 Latent Classes, with the selection of the best-
fitting model based on a comprehensive evaluation of 
the following parameters: the Bayesian information cri-
terion (BIC), Akaike Information Criterion (AIC) and 
Lo-Mendell-Rubin ad-hoc adjusted likelihood ratio test 
(calculated in R by the calc_lrt function), plus a criterion 
of parsimony, whereby no solutions were deemed accept-
able if any cell (class) contained < 5% of subjects. The 
selected Latent class models were then visualized, with 
R code adapted from  h t t  p s : /  / m c  f r  o m n  z . w o  r d p  r e  s s .  c o m 
/  2 0 1  1 /  1 0 / 0 2 / l a t e n t - c l a s s - m i x t u r e - m o d e l i n g - w i t h - g r a p h 
i c s /     . The model in R can be described as follows: latent 
class model <- lcmm (dependent.variable ~ day + arm, 
mixture = ~ day, subject = participant.ID, ng = 2/3/4/5/6). 
Further details of these procedures can be found in 
Appendix B.

To estimate the degree of interdependence among the 
classes of the 3 WA variables, Cramer’s V coefficients 
were calculated using SPSS 27 [35].

Aim 3: predicting latent class membership through clinical 
questionnaires
We assessed the ability of PHQ-A’s scores at intake to 
predict membership into the WA classes by multinomial 
regression, where: (a) the PHQ-A scores at intake dichot-
omised into ‘clinical/non-clinical’ (PHQ-A > 14), and: (b) 
sex, were the predictors, and the most probable member-
ship in every readout’s trajectory was the dependent vari-
able, with age as a covariate.

Since rumination is a frequent associated feature of 
AMDD, we similarly assessed the ability of RRS scores 
at baseline to predict membership in WA class as the 
dependent variable by regression.

To corroborate our findings relative to Aims 2) and 3) 
(see below) via an approach that is alternative to LCA, 
we analysed the dataset with Linear mixed effects model 
[36], using random intercepts and the respective vari-
ables as fixed effects predictors. Differently from the 
LCA, this approach allows for estimating the effects of 
predictors on variation of accelerometry data per partici-
pant in time, without constraining individuals within any 
specified class.

For every accelerometry variable, we first ran an uncon-
ditional model, which only included the ‘arm’ and the 
‘night’ variables as the predictors/covariates. Two ver-
sions of this unconditional model were run: one with the 
‘arm’ variable treated as a linear time predictor (i.e., a ver-
sion of the model that simply tested whether or not a sig-
nificant temporal trend was discernible in the data), and 
another version that treated ‘arm’ as a semi-continuous 
predictor (i.e., a version of the model that tested whether 
one or more arms significantly differed from arm 1). 
Because of these features, one may consider these two 
versions of the unconditional model as nested one into 
the other. These two versions were compared one to the 
other, so that a successive conditional model with: age, 
sex, PHQ-9 (treated as a dichotomous variable: ‘clinical/
non-clinical’ PHQ-A > 14), and RSS, could be run on the 
version of the model that provided the best fit. The ‘night’ 
variable was treated as a 30-level categorical covariate, 
but was not included in the summary.

Based on previous findings in community children [21] 
and in adults with MDD [12], we hypothesised associa-
tions between PHQ scores in the clinical range and: (a) 
reduced physical activity, and (b) shorter sleep duration.

Results
Sample
Over 31 months, we enrolled 72 individuals who pro-
vided WA data (72.5%% female, mean age in years: 
17.44 ± 2.2). Recruitment was carried out through clini-
cian referral (n = 38), external advertisements (n = 25), 
referral from other research studies (n = 6), and our 
hospital’s research website (n = 3). Preliminary analyses 
showed that the mean age and sex of clients with miss-
ing data did not differ significantly between hospital 
recruitment and external recruitment sources. According 
to the diagnostic interviews, 44 (61%) participants had a 
current MDD episode, while the remaining participants 
were in remission. The number of quarterly collections 
varied between 1 and 7 (as no one had yet completed the 
entire quarters of this 2 year longitudinal study), with the 
median number of collections in WA being 2.51.

Aim 1: assessing covariation among WA features
Table  2 shows the correlations among the 3 WA-gen-
erated variables in the study, obtained by averaging the 

https://cran.r-roject.org/web/packages/Hmisc/index.html
https://cecileproust-lima.github.io/lcmm/
https://cecileproust-lima.github.io/lcmm/
https://mcfromnz.wordpress.com/2011/10/02/latent-class-mixture-modeling-with-graphics/
https://mcfromnz.wordpress.com/2011/10/02/latent-class-mixture-modeling-with-graphics/
https://mcfromnz.wordpress.com/2011/10/02/latent-class-mixture-modeling-with-graphics/
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means of each participant for all arms of the study. While 
these values are insensitive to change in time, they pro-
vide a broad picture of the interrelationships among 
variables. In examining the correlations, it is important 
to remember that Sleep Efficiency is the % ratio between 
the total sleep duration and sleep period time: as such, 
its correlation with Sleep Duration is non-independent. 
Sleep Efficiency showed moderate, positive correla-
tions with Acceleration, indicating positive covariation 
between actigraph-measured sleep efficiency and the 
amount of physical activity. Sleep Duration appeared 
only weakly and negatively correlated with Acceleration.

Aim 2: identifying trajectories using latent class analysis
Table 3; Fig. 1 show the results of latent class analyses for 
WA-generated variables: between 3 and 4 classes were 
required to achieve an adequate fit to the models.

Overall all these classes showed steady, relatively flat 
trajectory shapes (Fig.  1) that indicate time stability, 
within the limited time of observation of this analysis. 
Figure 1 (a to c) also shows remarkable variance around 
the aforementioned trajectories.

Aim 3: predicting latent class membership through clinical 
questionnaires
The multinomial regression model for Acceleration (4 
classes) yielded a significant overall model result (Chi-
square = 22.5, DF = 12, p = 0.03), with a significant effect 
for PHQ-A score (Likelihood ratio chi square = 9.8, 
DF = 3, p = 0.02) yielding Wald = 6. p = 0.014, Exp. B = 20.1, 
with a prediction of Trajectory 1 vs. trajectory 4 in the 
expected direction. This means that less Acceleration was 
predicted by higher (i.e., > 14) PHQ-A at baseline. Nei-
ther sex nor age significantly affected the association.

The multinomial regression model for Sleep Dura-
tion (3 classes) yielded a significant overall model result 
(Chi-square = 15.6, DF = 6, p = 0.016), a Cox-Snell pseudo 
R square = 0.23 and a significant effect for PHQ–A score 
(Likelihood ratio chi square = 6.6, DF = 2, p = 0.04), with a 
prediction of Trajectory 1 vs. trajectory 3 in the expected 
direction. This means that shorter sleep duration was 
predicted by higher (i.e., > 14) PHQ-A at baseline. Nei-
ther sex nor age significantly affected the association.

The multinomial regression model for Sleep Efficiency 
(3 classes) yielded a non-significant overall model result 
(Chi-square = 12.1, DF = 6, p = NS). Similarly, regression 

Table 2 Grand mean correlations among the 3 actigraphic (WA) 
variables
Correlation Acceleration Sleep duration Sleep efficiency
Acceleration -
Sleep duration −0.15 -
Sleep efficiency 0.31* 0.62** -
Each observation of the data set was the averaged means of each participant for 
all arms (between 1 and 8) within the study

The Cramer V coefficient between acceleration and sleep efficiency was 0.27 
(p = 0.04), and 0.21 (p = 0.17) between acceleration and sleep duration

*p < 0.05 **p < 0.001

Table 3 Latent class analysis model summary for WA variables (N subjects = 72, N observations = 3716, with best fitting solution in 
bold) % subjects in class
Variable N of Classes Log Likelihood BIC AIC 1 2 3 4 5 6
Acceleration 1 −15757.1 31544.1 31528.2 100.0

2 −15304.7 30652.1 30629.3 37.5 62.5
3 −15205.6 30466.7 30437.1 18.1 52.8 29.2
4* −15154.5 30377.4 30341.0 23.6 41.7 11.1 23.6
5” −15166.1 30413.4 30370.1 9.7 22.2 40.3 22.2 5.6
6 −15138.1 30370.3 30320.2 23.6 37.5 11.1 11.1 1.4 15.3

Sleep duration 1 −22589.1 45208.1 45192.2 100.0
2 −22417.5 44877.7 44854.9 86.1 13.9
3 −22336.4 44728.3 44698.7 41.7 47.2 11.1
4 −22251.9 44572.3 44535.9 34.7 51.4 11.1 2.8
5* −22234.2 44549.7 44506.4 51.4 34.7 6.9 5.6 1.4
6 −22226.5 44547.0 44497.0 34.7 51.4 6.9 4.2 1.4 1.4

Sleep efficiency 1 2133.4 −4215.6 −4242.9 100.0
2 2340.9 −4617.7 −4651.9 75.0 25.0
3* 2400.2 −4723.4 −4764.4 27.8 54.2 18.1
4 2405.6 −4721.5 −4769.3 12.5 23.6 18.1 45.8
5 2414.6 −4726.5 −4781.2 27.8 52.8 5.6 8.3 5.6
6 2414.7 −4713.9 −4775.3 27.8 45.8 18.1 2.8 5.6 0.0

Selected latent class models based on BIC, AIC, Lo-Mendel test and class distributions

*Lo-Mendell-Rubin ad-hoc adjusted likelihood ratio test results not significant (at alpha = 0.05) between class # and the next (e.g. p = 1.00 between 4 and 5 classes)

Model failed to converge at global maximum, hence Log Likehood is smaller than previous class
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Fig. 1 Visualisation of best-fitting latent class analyses of acceleration (Activity), sleep duration, sleep efficiency. a Average Activity (Acceleration in mg) 
over Days (1–30) within each arm for model with 4 latent classes. b Sleep Duration (min) over Days (1–30) within each arm for model with 3 latent classes. 
c Sleep Efficiency (%) over Days (1–30) within each arm for model with 3 latent classes
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models to predict class membership by RRS score did not 
yield significant results.

Linear mixed effects model.

(a) Acceleration

For Acceleration, both version of the unconditional 
model yielded significant results, but comparison 
between the two versions (with DF respectively = 3615 
and 3612) showed better fit (likelihood ratio test chi-
square = 24.00, p < 0.001) for the version with ‘arm’ as a 
semi-continuous predictor. When a conditional model 
with: age, sex, PHQ-9, and RSS, was run on the latter 
model, and showed a significant effect only age (p = 0.007) 
and suggestive evidence for PHQ (p = 0.057). See detailed 
model summary in Table 4.

(b) Sleep duration

For Sleep Duration, the results of linear mixed models 
resembled those obtained with Acceleration, in that a 
conditional model with ‘arm’ as a semi-continuous pre-
dictor and age, sex, PHQ, and RSS, showed an effect for 
PHQ (p = 0.03) only. However, a sensitivity analysis with 
all high influential cases deleted reduced the significance 
of PHQ (p = 0.06).

(c) Sleep efficiency

Both unconditional models for Sleep Efficiency yielded 
non-significant results, so that their statistical compari-
son was meaningless. When we ran a model with ‘arm’ 
as a semi-continuous predictor and age, sex, PHQ-9, and 
RSS, no significant effect emerged.

Discussion
This study shows that: a) the WA readouts show recip-
rocal, sensible correlations; b); a dense amount of longi-
tudinally-assessed, wearable-collected data relative to: 
Acceleration, Sleep Duration, Sleep Efficiency is reduc-
ible into a finite number of classes c) membership into 
classes of higher vs. lower physical activity (as indexed by 
Acceleration), and shorter vs. longer Sleep Duration are 
predicted by the PHQ-A, a popular measure of depres-
sion in youth.

The correlation matrix of averaged: Acceleration, Sleep 
Duration, and Sleep Efficiency showed moderate-to-sub-
stantial reciprocal correlations in the expected directions, 
in that greater Acceleration was associated with greater 
Sleep Efficiency. In addition, we found the same mod-
est, negative, association between Acceleration and Sleep 
Duration found in a cohort of US adults [6] assessed with 
the GENEActiv device. Overall, the correlation matrix 
indicated that amongst youth at varying clinical stages 
of AMDD, more physical activity is associated with bet-
ter sleep quality, which constitutes a validation through 
objective, longitudinally-gathered WA measures, of a 

Table 4 Detailed summary of linear mixed-effects model output
Outcome Predictor1 β  estimate Standard error Degrees of freedom t-value 95% CI p-value Effect size

Acceleration4 Intercept 64.202 8.821 3119 7.278 (47.006, 81.398) < 0.001
Male vs. female 2.894 2.661 56 1.088 (−2.406, 8.194) 0.281 0.176
Age −1.322 0.469 56 −2.816 (−2.257, −0.387) 0.007 −0.081
PHQ-9 −4.827 2.479 56 −1.947 (−9.765, 0.111) 0.057 −0.294
RRS −0.109 0.316 56 −0.343 (−0.739, 0.522) 0.733 −0.007
Arm 2 vs. arm 12 −2.516 0.688 3119 −3.66 (−3.857, −1.176) < 0.001
Arm 3 vs. arm 1 −0.375 0.775 3119 −0.484 (−1.886, 1.136) 0.629
Arm 4 vs. arm 1 −2.555 0.931 3119 −2.745 (−4.369, −0.74) 0.006
Arm 5 vs. arm 1 −7.112 1.608 3119 −4.423 (−10.247, −3.977) < 0.001

Sleep duration5 Intercept 477.712 64.552 3122 7.4 (351.815, 603.608) < 0.001
Male vs. female −2.244 3.435 56 −0.653 (−9.088, 4.6) 0.516 −0.02
Age 20.474 19.486 56 1.051 (−18.355, 59.302) 0.298 0.182
PHQ-9 40.953 18.125 56 2.259 (4.837, 77.07) 0.028 0.364
RRS −2.586 2.314 56 −1.117 (−7.198, 2.025) 0.269 −0.023
Arm3 1.756 1.709 3122 1.028 (−1.577, 5.089) 0.304

1The night variable (30 levels) was included in the model as a categorical predictor but their estimates are not included here
2Arm was treated as a categorical predictor since it improves the fit significantly (p-value < 0.001) in contrast to being treated as a semi-continuous predictor
3Arm was treated as a semi-continuous predictor since being treated as a categorical predictor did not improve the fit significantly (p-value = 0.292)
4Model diagnostic analysis did not show deviation from the normality assumption (p-value = 0.353, Kolmogorov-Smirnov Test). About 5.4% of the observations were 
categorized as high influential cases. However, a sensitivity analysis with these cases deleted did not show substantial differences
5Model diagnostic analysis showed deviation from the normality assumption (p-value = 0.002, Kolmogorov-Smirnov Test). Given the large sample size, this has little 
impact on the validity of the tests for significance. About 5.3% of the observations were categorized as high influential cases. A sensitivity analysis with these cases 
deleted changed the significance of PHQ-9 with a p-value of 0.061
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similar conclusion yielded by a systematic review of 141 
studies of adolescents across 57 different countries [8].

The insights from the time-insensitive approxima-
tions yielded by the correlation matrix were then better 
specified and expanded in the context of the latent class 
analyses, which allowed for a more granular examination 
of the temporal unfolding of the WA variables, and of 
their reciprocal relationships. The WA longitudinal data 
organised into 3 accelerometer measures could be fit into 
a finite number of clearly separated classes (specifically: 
3 classes for Sleep Duration and Sleep Efficiency, and 4 
classes for Acceleration). This finding is qualitatively 
similar to the results obtained by wearable-assisted lon-
gitudinal assessments of general population English ado-
lescents [21] that showed 3 distinct and stable subgroups: 
light activity, moderate-to-vigorous activity, sedentary.

Our LCA modelling (Fig. 1, a through c) also yielded a 
clear degree of temporal stability across all the classes of 
Acceleration, Sleep Duration, and Sleep Efficiency, again 
in keeping with the 4 year longitudinal study with accel-
erometers of the ALSPAC adolescents, between age 12 
and age 16 [21]. This altogether suggests that the psycho-
physiological variables of Acceleration, Sleep Duration, 
and Sleep Efficiency as captured by actigraphy reflect 
relatively stable sources of individual differences, and 
may be considered biopsychological traits against which 
the depressive symptomatology can be juxtaposed, and 
mapped. In addition to this joint variation, in keeping 
with studies of WA in adults [12], our data also show a 
degree of within-classes individual variation. While we 
did not directly address individual variation in our latent 
classes, multimodal data-reduction technique showed 
that that WA’s joint components’ variation outweighs 
individual variation.

Our third aim addressed the relationships between 
membership in WA classes and: PHQ-A scores, and RRS 
score at baseline. The significant association between a 
clinical PHQ-A score (PHQ-A > 14) and the trajectory of 
lowest physical activity (Acceleration) is in broad keep-
ing with the results of a mendelian randomisation study 
of adults with MDD that showed a protective relationship 
between accelerometer-based activity and MDD [17].

The mixed model analyses yielded results that were 
consistent with our LCA findings, in that PHQ showed 
some effect for both Acceleration and Sleep Duration. 
This implicates that individuals who entered the study 
with clinical symptoms of depression tend to show 
relatively stable patterns of lower physical activity and 
shorter sleep duration across multiple quarterly check-
points in up to 2 year timeline. This should be best con-
sidered as a suggestive evidence, and future validation of 
this early finding is warranted.

In keeping with the results of the START longitudinal 
study of depression in adolescents [16], a score above 

clinical cut-off on the PHQ-A predicted shorter Sleep 
Duration. These results indicate a relatively robust, repli-
cable relationship between objective measures of physical 
activity, sleep and depressive symptoms among adoles-
cents diagnosed with MDD, and resonate with the notion 
that physical activity is beneficial for/protective against 
AMDD [18]. They also support targeting behavioural 
activation as a treatment for AMDD [18]. The lack of sig-
nificant covariation with ruminative scores may in turn 
indicate a relative specificity of the above-mentioned 
relationships, in that the PHQ-A scores that directly 
tap the construct of AMDD, but not the RRS scale that 
assesses the AMDD-associated feature of rumina-
tion, predict specific classes of low physical activity and 
shorter sleep duration. It may also suggest that rumina-
tion has a limited role in the physical experiences (sleep 
disturbance, physical activity) of AMDD, supporting the 
use of activation approaches more than addressing rumi-
nation or other cognitive facets among youth who experi-
ence physical, more than cognitive symptoms of AMDD.

A certain amount of individual variability also emerges 
from the temporal unfolding of Acceleration, Sleep Dura-
tion, and Sleep Efficiency (Fig.  1, a through c). As the 
DEW study sample grows in time, and more data become 
available, this temporal variation will become available to 
statistically more powerful and reliable analyses. These 
future analyses can encompass potentially relevant vari-
ables such as: seasonality, day-of-the-week (i.e. week-
ends vs. school days), menstrual cycles, etcetera.

In conclusion, our data provide evidence in favour of 
significant and clinically meaningful covariations among 
classes of Acceleration, Sleep Duration and self-assessed 
symptoms of depression; the underlying causal mecha-
nisms of this covariation are however still being inves-
tigated. Our findings align to a considerable extent with 
those of similar investigations carried out among adoles-
cents of the ALSPAC cohort [21] and adults with/at risk 
for MDD [12], and support the view that at least some of 
the accelerometric variables are biomarkers of MDD. The 
evidence in favour of considerable, joint variation among 
accelerometric variables suggests that this shared source 
of variation can be the target of future etiological and 
clinical studies of MDD.

Limitations
This is an interim study based on a relatively small sam-
ple: as such, it likely yields a limited power and will need 
extension from further recruitment of participants with 
the DEW study cohort, as well as replication from other 
groups. The data collection was limited to quarterly col-
lections of 30 days via wearables. This implies a lack of 
data points -hence potential loss of relevant information- 
between the different assessment periods. However, as 
with any studies that imply longitudinal assessments and 
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the adoption of technology [37, 38], we needed to strike 
the balance between density of data collection, Gene-
Activ’s battery autonomy, and the potential impact of 
prolonged use of wearable on participants’ compliance. 
Recent studies that employed the same device in adults 
managed to extract meaningful data on accelerometry 
variation and MDD from 14 days of data collections [12]. 
The association between depressive scores and physical 
activity could be explained by confounders that were not 
taken into account here. However, analyses carried out in 
large adult samples that took into account several con-
founders (such as: race, BMI, medication) still found a 
sizable, reliable degree of accelerometry-based variability 
and MDD [12].

Moreover, given the complexity and density of the data, 
it appears that new approaches such as machine learning 
[39] can improve our ability to analyse wearable-collected 
data, obtain more eloquent patterns of association, and 
potentially derive powerful models of relapse.

Conclusions
Wearable-generated variables on physical activity and 
sleep can be reduced to a finite number of classes of indi-
viduals; interfacing membership in these classes with 
clinical measures of adolescent depression yield statisti-
cally significant and clinically meaningful relationships. 
The conjoint use of objective, wearable-generated mea-
sures and of clinical measures of depression may deepen 
our understanding of AMDD. The identification of dis-
tinct classes of people with specific patterns of physical 
activity and sleep can inform more focused interventions 
on AMDD. For instance, membership in a class of low 
physical activity would call for more emphasis on activa-
tion therapy, while membership in a class of shorter sleep 
duration would suggest more in-depth therapeutic work 
in sleep hygiene.
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